Sliding Mode Adaptive Neural-Network Control for Nonholonomic Mobile Modular Manipulators
نویسندگان
چکیده
A general mobile modular manipulator can be defined as a m-wheeled holonomic/nonholonomic mobile platform combining with a n-degree of freedom modular manipulator. This paper presents a sliding mode adaptive neural-network controller for trajectory following of nonholonomic mobile modular manipulators in task space. Dynamic model for the entire mobile modular manipulator is established in consideration of nonholonomic constraints. Multilayered perceptrons (MLP) are used as estimators to approximate the dynamic model of the mobile modular manipulator. Sliding mode control and direct adaptive technique are combined together to suppress bounded disturbances and modeling errors caused by parameter uncertainties. Simulations are performed to demonstrate that the established models are valid and the control method is effective.
منابع مشابه
Adaptive Neural-Network Control for Redundant Nonholonomic Mobile Modular Manipulators
This paper discusses the trajectory following issue for redundant nonholonomic mobile modular manipulators. Dynamic model is established and an adaptive neural-network controller is developed to control the end-effector to follow a desired spacial trajectory. The proposed algorithm doesn’t need any priori dynamics and provides a new solution for stabilization of redundant robotic selfmotions. S...
متن کاملAdaptive Sliding Mode Tracking Control of Mobile Robot in Dynamic Environment Using Artificial Potential Fields
Solution to the safe and collision-free trajectory of the wheeled mobile robot in cluttered environments containing the static and/or dynamic obstacle has become a very popular and challenging research topic in the last decade. Notwithstanding of the amount of publications dealing with the different aspects of this field, the ongoing efforts to address the more effective and creative methods is...
متن کاملDynamics and Control for Nonholonomic Mobile Modular Manipulators
The development of a robot requires that it be able to adopt as many configurations as possible using limited modules, so as to allow the construction of new types of robots without redesign and remanufacturing. Traditionally, modular manipulators are mounted on a fixed base whose mobility is constrained. However, with the development of industry and technology, such modular manipulators as mou...
متن کاملSliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks
In this work a sliding mode control method for a nonholonomic mobile robot using adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a kinematics nominal model, and a practical design th...
متن کاملRobust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot
Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 44 شماره
صفحات -
تاریخ انتشار 2005